Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century

12 Oct.,2023

 

  1. Schulze J, Killermann O (2001) Long-term performance of redispersible powders in mortars. Cem Conc Res. https://doi.org/10.1016/s0008-8846(00)00498-1

  2. Liang C, Liang H, Mannesh NS, Michael JR (2015) Water redispersible epoxy polymer powder and method for making the same. United States Patent US9200155B2

  3. Sidley Chem (2017) https://celluloseether.com/what-are-redispersible-polymer-powder

  4. Silverio Neto W, Thyago Jesen AH, Ribeiro Ferreira L, Fonseca Valadares R, Gambetta S, Belem G (2015) A survey on synthesis process of structured materials for biomedical applications; iron-based magnetic nanoparticles, polymeric materials, and polymerization process. Curr Pharma Des 21:5336–5358

  5. Thickett SC, Gilbert RG (2007) Emulsion polymerization state of the art in kinetics and mechanism polymer. Polymer 48:6965–6991

  6. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Poly Sci 36:887–913

  7. Peter Weitzel H, Stark K (2012) Protective-colloid-stabilized polymers in the form of their aqueous dispersions or their water-redispersible powders. United States Patent US8217109B2

  8. Thaker SM, Mahanwar PA, Patil VV, Thorat BN (2010) Synthesis and spray drying of water redispersible polymer. Dry Techno. https://doi.org/10.1080/07373931003799152

  9. Silverio WN, Thyago AJ, Ribeiro HF, Fonseca LV, Gambetta R, Belem SG (2015) A survey on synthesis process of structured materials for biomedical applications; iron-based magnetic nanoparticles, polymeric materials, and polymerization process. Curr Pharma Des 21:5336–5358

  10. Pak-Harvey H, Ling MC (1996) Redispersible acrylic polymer powder for cementitious compositions. United States patent US5519084A

  11. Baveregger S, Perello M, Plank J (2014) Influence of anti-caking agent kaolin on film formation of ethylene-vinyl acetate and carboxylated styrene-butadiene latex polymers. Cem Conc Res. https://doi.org/10.1016/j.cemconres.2014.01.017

  12. Zhang L, Liu L, Qian Y, Chen Y (2008) The effect of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM). Eur J Pharm Biopharma 69:750–759

  13. Stark B, Pabst G, Prassl R (2010) Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: effects of cryoprotectants on the structure. Europ J Pharm Sci 41:546–555

  14. Varshosaz J, Eskandari S, Tabbakhian M (2012) Freeze-drying of nanostructured lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbo Poly 88:1157–1163

  15. Shi AM, Wang LJ, Li D, Adhikari B (2012) The effect of annealing and cryoprotectants on the properties of vacuum-freeze dried starch nanoparticles. Carbo Poly 88:1334–1341

  16. Chung NO, Lee MK, Lee J (2012) Mechanism of freeze-drying drug nanosuspensions. Inter J Pharma 437:42–50

  17. Cal K, Sollohub K (2010) Spray drying technique. I: hardware and process parameters. J Pharma Sci 99:575–586

  18. Gallo L, Llabot JM, Allemandi D, Bucala V, Pina J (2011) Influence of spray-drying operating conditions on Rhamnus purshiana (Cascara Sagrada) extract powder physical properties. Powder Technol 208:205–214

  19. Lutz H, Hahner C (2002) Applications of redispersible powders. Polymer Dispersions and Their Industrial Applications, pp 329–354. https://doi.org/10.1002/3527600582.ch13. Print ISBN:9783527302864 |Online ISBN:9783527600588

  20. Murrieta-Pazos I, Gaiani C, Galet L, Calvet R, Cuq B, Scher J (2012) Food powders: surface and form characterization revisited. J Food Eng 112:1–21

  21. Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharma 284:109–122

  22. Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Pow Tech 17:1–28

  23. Grama CN, Ankola DD, Kumar MNVR (2011) Poly(lactide-co-glycolide) nanoparticles for peroral delivery of bioactive. Curr Opin Coll Inter Sci 16:238–245

  24. Chan HK, Kwok PCL (2011) Production methods for nano-drug particles using the bottom-up approach. Adv Drug Del Rev 63:406–416

  25. D’Addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Del Rev 63:17–426

  26. Desai PP, Date AA, Patravale VB (2012) Overcoming poor oral bioavailability using nanoparticle formulations -opportunities and limitations. Drug Dis Ass Tech 9:87–95

  27. Hunter AC, Elsom J, Wibroe PP, Moghimi SM (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed Nanotechnol Bio Med 8:5–20

  28. Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Del Rev 64:246–255

  29. Keck CM, Muller RH (2013) Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharma Biopharma 84:445–448

  30. De Gasparo A, Herwegh M, Zurbriggen R, Scrivener K (2009) Quantitative distribution patterns of additives in self-leveling flooring compounds (underlayments) as a function of the application, formulation, and climatic conditions. Cem Conc Res 39:313–323

  31. Wang R, Wang PM (2011) Action of re-dispersible vinyl acetate and versatate copolymer powder in cement mortar. Const Build Mat 25:4210–4214

  32. Wang R, Wang PM, Yao LJ (2012) Effect of redispersible vinyl acetate and versatate copolymer powder on the flexibility of cement mortar. Cons Build Mat 27:259

  33. Winnefeld F, Kaufmann J, Hack E, Harzer S, Wetzel A, Zurbriggen R (2012) Moisture induced length changes of tile adhesive mortars and their impact on adhesion strength. Cons Build Mat 30:426–438

  34. Betioli AM, Gleize PJP, John VM, Pileggi RG (2012) Effect of EVA on the fresh properties of cement paste. Cem Conc Comp 34:255–260

  35. Petit JY, Wirquin E (2013) Evaluation of various cellulose ethers performance in ceramic tile adhesive mortars. Int J Adh Adhe 40:202–209

  36. Schulze J, Herold H, Hinterwinkler J (1992) Redispersible Powder Composition. United States Patent US5118751

  37. Tsai MC, Papsin GA, Chiou SJ (1995) A Redispersible Core-Shell Polymer Powder. United States Patent US5403894

  38. Tewa-Tagne P, Brianc S, Fessi H (2007) Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterization. Europ J Pharma Sci 30:124–135. https://doi.org/10.1016/j.ejps.2006.10.006

  39. Kim S, Lee J (2010) Effective polymeric dispersants for vacuum, convection, and freeze-drying of drug nanosuspensions. Int JPharma 397:218–224

  40. Chaubal M, Popescu C (2008) Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharma Rev 25:2302–2308

  41. Cresson L. Improved manufacture of rubber road-facing, rubber-flooring, rubber-tiling or other rubber-lining. British Patent 191, 474, 1923 Jan 12.

  42. Lefebure, V. (1924), "Improvements in or relating to concrete, cements, plasters and the like", British Patent 217, 279, June

  43. Geist JM, Amagna SV, Mellor BB (1953) Improved portland cement mortars with polyvinyl acetate emulsions. Ind Eng Chem 45:759–767

  44. Wagner HB (1965) Polymer-modified hydraulic cement. Ind Eng Chem Prod Res Develop 4:191–196

  45. Cherkinskii YS (1960) Polymer-tsementnyi beton. Gosudarstvennoe Izdatel’stvo Literatury po Stroitel’stvu. Arkhitekture i Stroitel’nym Materialam, Moscow

  46. Mori S, Kawano T, Ohama Y, Kunisawa S, Okikura M (1961) Influences of stability of rubber latices on the latex-cement mortars (Introduction, Parts I to IV). J Res Onoda Cem Comp 13:232–245

  47. Itinskii VI, Oster-Volkov NN, Kamenskii IV (1962) Plastic-concrete in dam construction. Soviet Plastics 255:59–61

  48. Simpson WC, Sommer HJ, Griffin RL, Miles TK (1960) Epoxy asphalt concrete for airfield pavements. J Air Transp Div Proc Am Soc Civil Eng 66:57–70

  49. Liesegang H (1962) Plastics in concrete. Plastics 27:62–64

  50. Murai N, Mizuno S (1961) Thermosetting plastic swelled with grainy fillers (plastic concrete). Rev Elec Com Lab 9:581–588

  51. Steinberg M, Kukacka LE, Colombo P, Kelsch JJ, Manowitz B, Dikeou JT, Backstrom J E, Rubenstein S (1968) Concrete-polymer materials, first topical report, BNL 50134 (T509), Brookhaven National Laboratory, Upton, New York; USBR Gen. 41, U. S. Bureau of Reclamation, Denver

  52. Fördös Z, Mikkelsen A, Singer K, Vinther A (1969) Plastimpraegnerede betonmaterialer I. Risø-M-986, BFL International-Repport pp 1–10

  53. Søpler B (1971) Polymerbetong-plastimpregnert betong: fremstilling, egenskaper og anvendelsesmuligheter. Polymer concrete-polymer-impregnated concrete: production, properties, and applications pp 33–38

  54. Tazawa E, Kobayashi S (1973) Properties and applications of polymer impregnated cementitious materials. Poly Conc 57–92

  55. Ohama Y, Sugama T (1973) Properties of polystyrene-impregnated mortar prepared by heat polymerization in hot water. In: Proceedings of the 16th Japan congress on materials research pp 216–218

  56. Beeldens A, Gemert DV, Schorn H, Ohama Y, Czarnecki L (2005) From microstructure to macrostructure: an integrated model a structure formation in polymer-modified concrete. Mater Struc 601

  57. Betioli AM, Filho JH, Cincotto MA, Gleize PJP, Pileggi RG (2009) Chemical interaction between EVA and Portland cement hydration at early-age. Const Build Mater 23:3332

  58. Khayat KH (1998) Viscosity-enhancing admixtures for cement-based materials-an overview. Cem Conc Comp 171

  59. Kong X, Emmerling S, Pakusch J, Rueckel M, Nieberle J (2015) Retardation effect of styrene-acrylate copolymer latexes on cement hydration. Cem Conc Res 75:23

  60. Kotwica Ł, Małolepszy J (2009) Effect of redispersible powders of vinyl acetate-ethylene copolymer on cement hydration. Cem Wapno Beton 282

  61. Ohama Y (1998) Polymer based admixtures. Cem Conc Comp 20:189

  62. Patural L, Marchal P, Govin A, Grosseau P, Ruot B, Devès O (2011) Cellulose ethers influence on water retention and consistency in cement-based mortars. Cem Conc Res 41:46

  63. Niu L, Lei L, Xia Z (2013) Redispersible Polymer Powder functionalized with NMA and its adhesive properties in dry-mixed coatings. J Adhe Sci Tech 27:1432–1445. https://doi.org/10.1080/01694243.2012.742401

  64. Yingchong C, Yan G, Yijing L, Yang L, Liang xing T, Yueqin M, Pengfei Y, Ming Y (2021) Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine. Powder Technol. https://doi.org/10.1016/j.powtec.2020.08.040

  65. Saija LM, Uminski M (1999) Water-redispersible low-Tg acrylic powders for the modification of hydraulic binder compositions. J App Poly Sci 71:1781–1787

  66. Afridi M, Ohama Y, Demura K, Iqbal M (2003) Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars. Cem Concr Res 33:1715–1721

  67. Wang R, Wang P (2011) Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Const Build Mat 25:4210–4214

  68. Greene B, Nelson A, Kaskey W (1980) Redispersible styrene/butadiene latexes. 1 Preparation and properties. J Phy Chem 84:1615–1620

  69. Christensen K, Pedersen G, Kristensen H (2001) Preparation of redispersible dry emulsions by spray drying. Int J Pharma 212:187–194

  70. Christensen K, Pedersen G, Kristensen H (2002) Physical stability of redispersible dry emulsions containing amorphous sucrose. Eur J Pharma Biopharma 53:147–153

  71. Tewa-Tagne P, Briançon S, Fessi H (2007) Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterization. Eur J Pharma Sci 30:124–135

  72. Wetzel A, Herwegh M, Zurbriggen R, Winnefeld F (2012) Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cem Conc Res 42:39–50

  73. Thaker S, Mahanwar P, Patil V, Thorat B (2010) Synthesis and spray drying of water-redispersible polymer. Drying Tech 28:669–676

  74. Gouri C, Nair CPR, Ramaswamy R (2001) Thermosetting film adhesives based on maleimide-modified phenol-functional acrylic copolymers. J Adhe Sci Tech 15:703–726

  75. Changquan CS (2011) Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhe Sci Tech 25:483–499

  76. Von M, Clamen G (1993) Acrylic redispersible powder technology-innovation and versatility. In: Proceedings of the 1st conchem international conference, Karlsruhe-D pp 55–63

  77. Ayoub MMH (1997) Emulsion copolymerization lattices for interior and exterior coatings. Pigm Resi Tech 26:6–11

  78. Uminski M, Saijja LM (2003) Preparation and characterization of re-dispersible acrylic powders. Pigm Resi Tech 6:364–370

  79. Seda R, Tigh V (2005) Synthesis and characterization of pure poly(acrylate) latexes progress. Inorg Coat 52:144–150

  80. Desset S, Spalla O (2000) Redispersion of alumina particles in water. Langmuir 16:10495–10508

  81. Zeh H, Baumgartl H (1995) Contribution to VOC abatement and waste management. Surf Coat Int 4:132–138

  82. Viala Ph, Bourgeat-Lamy E, Guyot A, Legrand P, Lefebvre D (2002) Pigment encapsulation by emulsion polymerisation, redispersible in water. Macro Symp 187:651–661

  83. Guziak LF, Maclay WN (1963) Redispersible latex polymer. J App Poly Sci 7:2249–2258

  84. Thaker SM, Mahanwar PA, Patil VV, Thorat BN (2010) Synthesis and spray drying of water-redispersible polymer. Drying Tech 28(5):669–676. https://doi.org/10.1080/07373931003799152

  85. Saija LM (1995) Waterproofing of portland cement mortars with a specially designed polyacrylic latex. Cem Conc Res 25(3):503–509

  86. Umin’ski M, Saija LM (1998) Spray-drying of low-Tg acrylic dispersions. Surf Coat Int 81(11):557–560

  87. Łukawski P (2008) Role of polymers in forming of properties of polymer-cement binders and composites. Warszawa 148

  88. Ohama Y (1995) Handbook of polymer-modified concrete and mortars; properties and process technology. Noyes Publication, New Jersey

  89. Łukawski P (2016) Material modification of concrete

  90. Levy SM, Helene P (2004) Durability of recycled aggregates concrete: a safe way to sustainable development. Cem Concr Res 34:1975–1980

  91. Kalaitzaki PM (2007) Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem Concr Res 37:283–290. https://doi.org/10.1016/j.cemconres.2006.11.007

  92. Collepardi M (1999) Thaumasite formation and deterioration in historic buildings. Cem Concr Comp 21:147–154

  93. Falchi L, Zendri E, Müller U, Fontana P (2015) The influence of water-repellent admixtures on the behavior and the effectiveness of Portland limestone cement mortars. Cem Concr Comp 59:107–118

  94. Ohama Y (2011) Concrete-polymer composites – the past, present, and future. Key Eng Mat 466:1–14

  95. Ohama Y, Suzuki S, Ozawa H (1982) Incombustibility of polymer-modified mortars. Proc Third Int Congr Polym Concrete 1:222

  96. Ohama Y, Masahiro O (2013) Recent trends in research and development activities of polymer-modified paste, mortar, and concrete in Japan. Adv Mat Res 687:26–34. https://doi.org/10.4028/www.scientific.net/AMR.687.26

  97. Ohama Y, Matsumoto S (2003) Effect of type of powdered antifoamer on properties of polymer-modified mortars using redispersible polymer powders with a powdered shrinkage-reduction agent. In: Proceedings of the 4th ASPIC pp 81–87

  98. AC1 Committee (1986) 548 J Am Concrete Inst 83:798–829.

  99. Afridi UK, Ohama Y, Demura K, Iqbal MZ (2003) Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars. Cem Conc Res 33(11):1715–1721

  100. Herbert E, HansD (2004) cross-linkable polymer powder compositions. United States patent US6730722B1

  101. Mansur AA, Piscitelli C, Nascimento Otavio LD, Vasconcelos WL, Mansur HS (2008) Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer-modified mortar adhesion mechanism implications. Mat Res 11(3):293–302. https://doi.org/10.1590/S1516-14392008000300011

  102. Zheng MY, Wen C, Xin C (2010) Impermeability of Sulphoaluminate Cement Mortar Modified by Redispersible Polymer Powders. Adv Mat Res 1886-1890.

  103. Yongbing P, Xinya Z, Jiang Y, Hong H, Huanqin C (2011) Redispersibility of acrylate polymer powder and stability of its reconstituted latex. J Disp Sci Tech 32:1279–1284. https://doi.org/10.1080/01932691.2010.505799

  104. Wang R, Ming WP (2011) Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Const Build Mat 25(11):4210–4214. https://doi.org/10.1016/j.conbuildmat.2011.04.060

  105. Hao CT, Xiang SW, Lu BL, Ruan H, Xiu GJ, Sheng WZ, Wang ZY (2011) High Performance and Low-Cost Compound Admixture of Expanded Perlite Powder/Redispersible Polymer Powder for Dry-Mixed Mortar High performance and low-cost compounds. Adv Mater Res 513-518

  106. Lin N, Liang L, Zhengbin X (2012) Redispersible polymer powder functionalized with NMA and its adhesive properties in dry-mixed coatings. J Adhe Sci Tech 27:1432–1445

  107. Guang XL, Gang L, Shuo F, Zhang ST (2013) Preparation and Properties of a New Polymer-Modified Cement Mortar Containing Iron Tailings Sand. Adv Mat Res 107-111. https://doi.org/10.4028/www.scientific.net/AMR.687.107

  108. Bier TA, Bajrami A (2013) Influence of polymer addition on early microstructure development in ternary binders. Restor Buildings Monuments 19:2–3. https://doi.org/10.1515/rbm-2013-6585

  109. Zhang X, Pei Y, Xie D, Chen H (2013) Modeling spray drying of redispersible polyacrylate powder. Drying Tech 32(2):222–235. https://doi.org/10.1080/07373937.2013.820741

  110. Jian C (2014) The influence of redispersible powder on mechanical properties of EPS light-aggregate. Conc Appl Mech Mater 651:173–176

  111. Zhang X, Yongbing P, Delong X, Huanqin C (2014) Modeling spray drying of redispersible polyacrylate powder. Drying Tech 32:222–235. https://doi.org/10.1080/07373937.2013.820741

  112. Xin F, Lin N (2015) Performance of redispersible polymer powders in wall coatings. J Adhe Sci Tech 29:296–307. https://doi.org/10.1080/01694243.2014.986023

  113. Guo RZ, Pei MW, Guo FZ (2015) Effect of latex film distributions on flexibility of redispersible polymer powders modified cement mortar evaluated by SEM. Adv Mater Res 1129:331–338

  114. Abbas RSA, Darabi A, Philip GJ, Michael FC (2015) Preparation of redispersible polymer latexes using cationic stabilizers based on 2-dimethylaminoethyl methacrylate hydrochloride and 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride. Polymer 60:1–8

  115. Delong X, Kai L, Lining W, Xinya Z (2015) Behavior of adipic dihydrazide and silica in the preparation of acrylate redispersible polymer powders. Coll Poly Sci 293:1937–1944. https://doi.org/10.1007/s00396-015-3568-x

  116. Teresa MP, Stefan B, Johann P (2016) Influence of temperature and moisture on the shelf-life of cement admixed with redispersible polymer powder. Cons Build Mater 115:336–344. https://doi.org/10.1016/j.conbuildmat.2016.04.056

  117. Cong M, Bing C (2016) Properties of magnesium phosphate cement containing redispersible polymer powder. Cons Build Mater 113:255–263. https://doi.org/10.1016/j.conbuildmat.2016.03.053

  118. Jeong-Bae L, Seung-Ho P, Seong-Soo K (2017) Physical properties of polymer modified cement mortars by the functional additives and modification of polymerization. J Cera Proc Res 18(3):220–229

  119. Peng D, Zong HZ, Zheng MY, Xin C (2017) Redispersible polymer powder-modified sulphoaluminate cement mortar. Key Eng Mater 726:495–499

  120. Babak K, Bruno B, Tikou B, Ahmed K (2017) Influence of polymer powder on properties of cemented paste backfill. Int J Mine Process 1–8

  121. Igor R, Oleksandar K, Artem V, Kovalchuk MV, Nikolainko DOV (2018) Efficiency of redispersible polymer powders in mortars for anchoring application based on alkali activated portland cements. Key Eng Mater 761:27–30. https://doi.org/10.4028/www.scientific.net/KEM.761.27

  122. Marcin K, Dawid D, Jadwiga F (2018) Effect of redispersible polymer powder on setting time of thin-bed mortars. MATEC Web Conf. 163. https://doi.org/10.1051/matecconf/201816304005

  123. Seongwoo G, Seung YJ, Myoungsu S (2018) Microstructure evolution and strength development of ultra-rapid hardening cement modified with redispersible polymer powder. Cons Build Mater 192:715–730. https://doi.org/10.1016/j.conbuildmat.2018.10.178

  124. Ariffin NF, Md Jaafar MF, Abdul Shukor Lim NH, Bhutta MAR, Hussin MW (2018) Mechanical properties of polymer-modified porous concrete. Mater Sci Eng 342:012081

  125. Stefano C, Elias T, Michela B, Giuseppe S, Massimo M (2018) Core-shell morphology of redispersible powders in polymer-cement waterproof mortars. Polymers 10(10):1122. https://doi.org/10.3390/polym10101122

  126. Darabi A, Abbas RSA, Sajad A, Michael FC Surfactant free emulsion copolymerization of styrene and methyl methacrylate for preparation of water-redispersible polymeric powders. J Poly Sci Part A: Poly Chem 56(20). doi: https://doi.org/10.1002/pola.29212

  127. Tarannum N, Pooja K, Khan R (2020) Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: a review. Cons Build Mater 247:118579. https://doi.org/10.1016/j.conbuildmat.2020.118579

  128. Haoxin L, Linan G, Biqing D, Qing C, Chao X, Xiaojie Y, Weishan W (2020) Improvements in setting behavior and strengths of cement paste/mortar with EVA redispersible powder using C-S-Hs-PCE. Cons Build Mater . https://doi.org/10.1016/j.conbuildmat.2020.120097

  129. Zhang Y, Zhengwu J, Yanmei Z, Zhang J, Qiang R, Huang T (2021) Effect of redispersible polymer powders on the structural build-up of 3D printing cement paste with and without hydroxypropyl methylcellulose. Cons Buid Mater 267:120551. https://doi.org/10.1016/j.conbuildmat.2020.120551

  130. Ohama Y, Demura K, Satoh Y, Tachibana K, Miyazaki Y (1989) In superplasticizers and other chemical admixtures in concrete SP-2 29. ACI: Detroit 321–342

  131. Koblischek PJ (1985) MOTEMA-acrylic concrete for machine tool frames. Int J Cem Comp Lightweight Conc 7(1):55–57

  132. McKeown PA, Morgan GH (1979) Epoxy granite: a structural material for precision machines. Precision Eng 1(4):227–229

  133. Paderewski K (1984) Use of polymer concretes in machine tool construction. Przeglad Mechaniczny 43(13):12–15

  134. Pratap A (2002) Vinyl ester and acrylic-based polymer concrete for electrical applications. Prog Crys Gro Charact Mater 45:117–125

  135. Ohama Y (1997) Recent progress in concrete-polymer composites. Adv Cem Based Mater 5(2):31–40

  136. Carrión F, Montalbán L, Real JI, Real T (2014) Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers. Scientific World J 2014:10

  137. Fowler DW (1999) Polymers in concrete: a vision for the 21st century. Cem Conc Comp 21:449–452

  138. Rebeiz KS (1996) Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste. Cons Build Mater 10(3):215–220

  139. Maksimov RD, Jirgens L, Jansons J, Plume E (1999) Mechanical properties of polyester polymer-concrete. Mech Compo Mater 5(2):99–110

  140. McNeil K, Kang THK (2013) Recycled concrete aggregates: a review. Int J Conc Str Mater 7(1):61–69

  141. Bai W, Zhang J, Yan P, Wang X (2009) Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests. Mater Desi 30(4):1417–1421

  142. Mirza J, Mirza MS, Lapointe R (2002) Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Cons Build Mater 16(6):365–374

  143. Bedi R, Chandra R, Singh SP (2013) Mechanical properties of polymer concrete. J Composites 2013:12

  144. Shaw JDN (1985) Resins in construction. Int J Cem Compo Lightweight Conc 7(4):217–223

  145. Mani P, Gupta AK, Krishnamoorthy S (1987) Comparative study of epoxy and polyester resin-based polymer concrete. Int J Adh Adhe 7(3):157–163

  146. Bărbuţă M, Harja M (2008) Experimental study on the characteristics of polymer concrete with epoxy resin. Buletinul Inst Politehnic din Iasi 1:53–59

  147. Golestaneh M, Amini G, Najafpour GD, Beygi MA (2010) Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Appl Sci J 9:216–220

  148. Roh IT, Jung KC, Chang SH, Cho YH (2015) Characterization of compliant polymer concrete for rapid repair of runways. Cons Build Mater 78:77–84

  149. Elalaoui O, Ghorbel E, Mignot V, Ouezdou MB (2012) Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °C. Cons Build Mater 27(1):415–424

  150. Haidar M, Ghorbel E, Toutanji H (2011) Optimization of the formulation of micro-polymer concretes. Cons Build Mater 25(4):1632–1644

  151. Reis JML, Ferreira AJM (2004) Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers. Cons Build Mater 18(7):523–528

  152. Dos Reis JML (2005) Mechanical characterization of fiber-reinforced polymer concrete. Mater Res 8(3):357–360

  153. Kumar A, Singh G, Bala N (2013) Evaluation of flexural strength of epoxy polymer concrete with red mud and fly ash. Int J Cur Eng Tech 3:1799–1803

  154. Ahmetli G, Dag M, Deveci H, Kurbanli R (2012) Recycling studies of marble processing waste: composites based on commercial epoxy resin. J App Poly Sci 125(1):24–30

  155. Muszynski LC (1983) A polyester polymer concrete compositions. United States Patent US4371639

  156. Ignacio C, Ferraz V, Oréfice RL (2008) Study of the behavior of polyester concretes containing ionomers as curing agents. J App Poly Sci 108(4):2682–2690

  157. Zhao FC, Jianbo ZZ, Cao S, Wang G (2011) Environmental-friendly waterproof polymer mortar. China patent CN101560084B

  158. Reis JML (2009) Mechanical characterization of polymer mortars exposed to degradation solutions. Cons Build Mater 23:3328–3331

  159. Joachim S, Otmar K (2001) Long-term performance of re-dispersible powders in mortars. Cem Conc Res 31:357–362

  160. Sakai E, Jun S (1995) Composite mechanism of polymer modified cement. Cem Conc Res 25(1):127–135

  161. Aggarwal LK, Thapliyal PC, Karade SR (2007) Properties of polymer-modified mortars using epoxy and acrylic emulsions. Cons Build Mater 21:379–383

  162. James AM, Said S (1990) Effect of the addition of an acrylic polymer on the mechanical properties of mortar. ACI Mater J 87(1):54–61

  163. Schulze J (1999) Influence of water-cement ratio and cement content on the properties of polymer-modified mortars. Cem Conc Res 29:909–915

  164. Banfill PFG, Bellagraa L, Benaggoun L (1993) Properties of polymer-modified mortars made with blended cement. Adv Cem Res 5(19):103–109

  165. Afridi MUK, Chaudhardy ZU, Ohama Y, Demura K, Iqbal MZ (1994) Strength and elastic properties of powdered and aqueous polymer-modified mortars. Cem Conc Res 24(7):1199–1213

  166. Eui-Hwan H, Young SK (2008) Comparison of mechanical and physical properties of SBR polymer-modified mortars using recycled waste materials. J Ind Eng Chem 14:644–650

  167. Zhao F, Li H, Liu S, Chen J (2011) Preparation and properties of an environment-friendly polymer-modified waterproof mortar. Cons Build Mater 25(5):2635–2638. https://doi.org/10.1016/j.conbuildmat.2010.12.012

  168. Ohama Y (1998) Polymer-based admixtures. Cem Conc Compo 20:189–212. https://doi.org/10.1016/S0958-9465(97)00065-6

  169. Maranhão FL, John VM (2009) Bond strength and transversal deformation aging on cement-polymer adhesive mortar. Cons Build Mater 23:1022–1027. https://doi.org/10.1016/j.conbuildmat.2008.05.019

  170. Bayer R, Lutz H (2010) Dry mortars. Encycl Ind Chem. https://doi.org/10.1002/14356007.f16_f01

  171. Wang R, Wang PM (2011) Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Cons Build Mater 25:4210–4214. https://doi.org/10.1016/j.conbuildmat.2011.04.060

  172. Mirza J, Mirza M, Lapointe R (2002) Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Cons Build Mater 16:365–374. https://doi.org/10.1016/S0950-0618(02)00027-2

  173. Ohama Y (1995) Handbook of polymer-modified concrete and mortars: properties and process technology. William Andrew, Norwich

  174. Miller M (2005) Polymers in cementitious materials. Smithers Rapra Publishing, Shawbury UK

  175. Jenni A, Holzer L, Zurbriggen R, Herwegh M (2005) Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem Conc Res 35:35–50. https://doi.org/10.1016/j.cemconres.2004.06.039

  176. Afridi MUK, Chaudhary ZU, Ohama Y, Demura K, Iqbal MZ (1994) Strength and elastic properties of powdered and aqueous polymer-modified mortars. Cem Conc Res 24:1199–1213. https://doi.org/10.1016/0008-8846(94)90105-8

  177. Wang R, Ma D, Wang P, Wang G (2015) Study on waterproof mechanism of polymer-modified cement mortar. Maga Conc Res 67:972–979. https://doi.org/10.1680/macr.14.00294

  178. Fan X, Niu L (2015) Performance of redispersible polymer powders in wall coatings. J Adhe Sci Tech 29:296–307. https://doi.org/10.1080/01694243.2014.986023

  179. Hong L, Chen L, Ladika M, Li Y, Kim-Habermehl L, Bergman R (2014) Impact of particle size and surface charge density on redispersibility of spray-dried powders. Colloids Surf, A 459:274–281. https://doi.org/10.1016/j.colsurfa.2014.07.015

  180. Wang F, Luo Y, Li BG, Zhu S (2015) Synthesis and redispersibility of poly (styrene-block-n-butyl acrylate) core-shell latexes by emulsion polymerization with RAFT agent–surfactant design. Macromolecules 48:1313–1319. https://doi.org/10.1021/ma502564m

  181. Rauh A, Rey M, Barbera L, Zanini M, Karg M, Isa L (2017) Compression of hardcore–softshell nanoparticles at liquid-liquid interfaces: influence of the shell thickness. Soft Matter 13:158–169. https://doi.org/10.1039/C6SM01020B

  182. Yu DG, Li JJ, Williams GR, Zhao M (2018) Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Contro Rel. https://doi.org/10.1016/j.jconrel.2018.08.016

  183. Li JJ, Yang YY, Yu DG, Du Q, Yang XL (2018) Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Euro J Pharma Sci 122:195–204. https://doi.org/10.1016/j.ejps.2018.07.002

  184. Liu X, Yang Y, Yu DG, Zhu MJ, Zhao M, Williams GR (2018) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J. https://doi.org/10.1016/j.cej.2018.09.096

  185. Raines CC, Starmer PH (1991) Free-Flowing Particles of an Emulsion Polymer Having SiO2 Incorporated Therein. United States Patent. US5,017,630

  186. Gonzalez-Leon JA, Ryu SW, Hewlett SA, Ibrahim SH, Mayes AM (2005) Core-shell polymer nanoparticles for baroplastic processing. Macromolecules 38:8036–8044. https://doi.org/10.1021/ma0508045

  187. Caimi S, Cingolan A, Jaquet B, Siggel M, Lattuada M, Morbidelli M (2017) Tracking of fluorescently labeled polymer particles reveals surface effects during shear-controlled aggregation. Langmuir 33:14038–14044. https://doi.org/10.1021/acs.Langmuir.7b03054

  188. Yamak HB (2013) Emulsion polymerization: effects of polymerization variables on the properties of vinyl acetate-based emulsion polymers. Polymer Science. InTech; London, UK.

  189. Asua JM (2004) Emulsion polymerization: from fundamental mechanisms to process developments. J Poly Sci A Poly Chem 42:1025–1041. https://doi.org/10.1002/pola.11096

  190. Golestaneh M, Amini G, Najafpour GD, Beygi MA (2010) Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Appl Sci J 9(2):216–220

  191. Grist JM, Amagna SV, Mellor B (1953) (Houdriforming reaction) catalytic mechanism. Ind Eng Chem 45:759

  192. Pitaloka AB, Asep HS, Nasikin M (2013) Water hyacinth for superabsorbent polymer material. World App Sci Jour 22(5):747–754

  193. Rakesh K (2016) A review on epoxy and polyester based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete. J Poly. https://doi.org/10.1155/2016/7249743

  194. Chris HE, Christopher TH, Randall PB, Richard HB (2003) Poly(vinyl alcohol) stabilized acrylic polymer modified hydraulic cement systems. United States patent US5753036A

  195. Khayat K (1998) Viscosity-enhancing admixtures for cement-based materials – an overview. Cem Conc Comp 20:171–188

  196. Ohama Y (1995) Handbook of polymer-modified concrete and mortars. Noyes Publications, New Jersey

  197. Paiva H, Silva L, Labrincha J, Ferreira V (2006) Effects of a water-retaining agent on the rheological behavior of a single-coat render mortar. Cem Conc Res 36(7):1257–1262

  198. Fu X, Chung D (1996) Effect of methylcellulose admixture on the mechanical properties of cement. Cem Conc Res 26(4):535–538

  199. Hayakawa K, Soshiroda T (1986) Effects of cellulose ether on the bond between matrix and aggregate in concrete. In: Sasse H, (ed.) Adhesion between polymers and concrete. Proceedings of an international symposium organized by Rilem Technical Committee 52:22–31

  200. Kim JH, Robertson R (1998) Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone. Adv Cem Based Mater 8(2):66–76

  201. Fu X, Chung D (1996) Effect of polymer admixtures to cement on the bond strength and electrical resistivity between steel fiber and cement. Cem Conc Res 26(2):189–194

  202. Fu X, Fu X, Lu W, Chung D (1996) Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix. Cem Conc Res 26(7):1007–1012

  203. Khayat K (1998) Viscosity-enhancing admixtures for cement-based materials – an overview. Cem Conc Res 20:171–188

  204. Knapen E, Van GD (2009) Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Conc Res 39(1):6–13

  205. Beeldens A, Van GD, Schorn H, Ohama Y, Czarnecki L (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct 38(6):601–607

  206. Beeldens A, Van GD, Schorn H, Ohama Y, Czarnecki L (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct 38:601–607

  207. Beeldens A (2002) Influence of polymer modification on the behavior of concrete under severe conditions. Ph.D. thesis, K.U. Leuven

  208. Knapen E (2007) Microstructure formation in cement mortars modified with water-soluble polymers. Ph.D. thesis. K.U. Leuven

  209. Baradan B (1998) Construction Materials –II (5th.ED). Dokuz Eylul University, Technical faculty publication section, Izmir Turkey

  210. Jiang SP, Mutin JC, Nonat A (1995) Studies on mechanism and physio-chemical parameters at the origin of cement setting. Cem Conc Res 25(4):779–789

  211. Beeldens A, Van Gemert D, Schorn H, Ohama Y, Czarnecki LL (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct 38:601

  212. Betioli AM, Hoppe FJ, Cincotto MA, Gleize PJP, Pileggi RG (2009) Cons Build Mater 23:3332

  213. Khayat KH (1998) Viscosity enhancing admixtures for cement-based materials-an overview. Cem Conc Comp 20:171–188

  214. Betioli AM, Hoppe FJ, Cincotto MA, Gleize PJP, Pileggi RG (2009) Chemical interaction between EVA and Portland cement hydration at an early stage. Cons Build Mater 23:3332

  215. Kong X, Emmerling S, Pakusch J, Rueckel M, Nieberle J (2015) Retardation effect of styrene acrylate copolymer latexes on cement hydration. Cem Conc Res 75:23–41

  216. Kotwica Ł, Małolepszy J (2009) Effect of redispersible powder of vinyl acetate-ethylene on cement hydration. Cement Wapno Beton 29:282

  217. Pourchez J, Grosseau P, Guyonnet R, Ruot B (2006) HEC influence on cement hydration measured by conductometry. Cem Conc Res 36:1777

  218. Schulze J, Killermann O (2001) Long term performance of redispersible powder in mortars. Cem Conc Res 31:357

  219. Silva DA, Monteiro PJM (2006) The influence of the polymers on the hydration of Portland cement phases analyzed by soft X-ray transmission microscopy. Cem Conc Res 36:1501

  220. Portland Cement Association (1968) Design and control of concrete mixes (11th. Ed), 5420 old orchard road, Skokie, Illinois 60076

  221. Annual Book of ASTM Standards (1982) Concrete and mineral aggregates. C 494–81: standard specifications for chemical admixtures for concrete 14

  222. Banfil PFG, Saunders DC (1986) The relationship between the sorption of organic compounds on cement and the retardation of hydration. Cem Conc Res 6(3):399–410

  223. Topçuoğlu Ö, Altinkaya SA, Balköse D (2006) Characterization of waterborne acrylic-based paint films and measurement of their water vapor permeabilities. Prog Org Coat 56:269–278

  224. Ludwig I, Schabel W, Kind M, Castaing JC, Ferlin P (2007) Drying and film formation of industrial waterborne latices. AIChE J 53:549–560

  225. Winnik MA (1997) Latex film formation. Curr Opin Coll Int Sci 2:192–199

  226. Steward PA, Hearn J, Wilkinson MC (2000) An overview of polymer latex film formation and properties. Adv Collo Int Sci 86:195–267

  227. Pérez E, Lang J (2000) Flattening of latex film surface and polymer chain diffusion. Langmuir 16:1874–1881

  228. Kientz E, Charmeau JY, Holl Y, Nanse G (1996) Adhesion of latex films. Jour Adhe Sci Tech 10:745–759

  229. Zhang K, Shen H, Zhang X, Lan R, Chen H (2009) Preparation and properties of a waterborne contact adhesive based on polychloroprene latex and styrene-acrylate emulsion blend. J Adhe Sci Tech 23:163–175

  230. Thompson DT (2007) Using gold nanoparticles for catalysis. Nano Today 2:40–43

  231. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

  232. Tanabe K (2007) Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater Lett 61:4573–4575

  233. Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Haz Mater 217:439–446

  234. Lee Y, Choi JR, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by a chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604

  235. Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Highly dispersed silica-supported copper nanoparticles prepared by the precipitation-gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem Mater 20:5090–5099

  236. Bhattacharya J, Choudhuri U, Siwach O, Sen P, Dasgupta AK (2006) Interaction of hemoglobin and copper nanoparticles: implications in hemoglobinopathy. Nanomedicine 2:191–199

  237. Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212

  238. Nguyen MS, Ho VT, Pham NTT (2011) The synthesis of BaMgAl10O17:Eu2+ nanopowder by a combustion method and its luminescent properties. Adv Natural Sci: Nanosci Nanotechnol 2(045005):4

  239. Zouari S, Ellouze M, Nasri A, Cherif W, Hlil EK, Elhalouani F (2013) Morphology, structural, magnetic, and magnetocaloric properties of Pr0.7Ca0.3MnO3 nanopowder prepared by mechanical ball milling method. J Supercond Novel Magn 27:555–563

  240. Hu S, Li F, Fan Z (2012) Enhanced visible light activity and stability of TiO2 nanopowder by co-doped with Mo and N. Kore Chem Soci 33:1269–1274

  241. So KS, Lee H, Kim TH, Choi S, Park DW (2014) Synthesis of silicon nanopowder from silane gas by RF thermal plasma. Phys Status Solidi A 211:310–315

  242. Safronov AP, Samatov OM, Medvedev AI, Beketov IV, Murzakaev AM (2012) Synthesis of strontium hexaferrite nanopowder by laser evaporation method. Nanotechnol Russ 7:486–491

  243. Ashassi-Sorkhabi H, Seifzadeh D, Raghibi-Boroujeni M (2012) Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings. Arab J Chem. https://doi.org/10.1016/j.arabjc.2012.02.018

  244. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 80:801–802

  245. Song JW, Lee DJ, Yilmaz F, Hong SJ (2012) Effect of variation in voltage on the synthesis of Ag nanopowder by pulsed wire evaporation. J Nano 2012:1–5

  246. Nekouei RK, Rashchi F, Ravanbakhsh A (2013) Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions. Powder Technol 250:91–96

  247. Song X, Sun S, Zhang W, Yin Z (2004) A method for the synthesis of spherical copper nanoparticles in the organic phase. J Coll Int Sci 273:463–469

  248. Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Pautova YI, Lerner MI, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. App Surf Sci 271:337–343

  249. Kim YS, Linh LT, Park ES, Chin S, Bae GN, Jurng J (2012) Antibacterial performance of TiO2 ultrafine nanopowder synthesized by a chemical vapor condensation method: effect of synthesis temperature and precursor vapor concentration. Powder Technol 215:195–199

  250. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process, and storage considerations. Adv Drug Deli Rev 58(15):1688–1713

  251. Hirsjarvi S, Peltonen L, Kainu L, Hirvonen J (2006) Freeze-drying of low molecular weight poly(L-lactic acid) nanoparticles: effect of cryo- and lyoprotectants. J Nanosci Nanotech 6:3110–3117

  252. Layre AM, Couvreur P, Richard J, Requier D, Eddine Ghermani N, Gref R (2006) Freeze-drying of composite core-shell nanoparticles. Drug Deve Ind Pharma 32(7):839–846

  253. Abdelwahed W, Degobert G, Fessi H (2006) Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Euro J Pharma Biopharma 63(2):87–94

  254. Freitas C, Muller RH (1998) Spray drying of solid lipid nanoparticles (SLN TM). Euro J Pharma Biopharma 46(2):145–151

  255. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Euro J Pharma Biopharma 50:161–177

  256. Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeld O (2001) Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharma 221:57–67

  257. Müller RH, Rühl D, Runge S, Schulze-Forster K, Mehnert W (1997) Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharma Res 14:458–462

  258. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phy Chem Chemic Phy 9:2319–2340

  259. Johnston APR, Cortez C, Angelatos AS, Caruso F (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Coll Int Sci 11:203–209

  260. Hegmann J, Mandl M, Löbmann P (2016) Thin Solid Films 564:201

  261. Noack J, Scheurell K, Kemnitz E, Garcia-Juan P, Rau H, Lacroix M, Eicher J, Lintner B, Sontheimer T, Hegemann J, Jahn R, Löbmann P (2012) J Mater Chem 22:18535

  262. Zou H, Wu S, Shen J (2008) Polymer silica nanocomposite: preparation, characterization, properties, and applications. Chem Rev 108:3893

  263. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica polymer nanocomposites-A review. J Nanomaterials 2012:1

  264. Phulé PP, Ginder JM (1999) Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Int J Mod Phy B 13(14n16):2019–2027. https://doi.org/10.1142/s0217979299002095

  265. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15(4):1075–1082. https://doi.org/10.1021/la9812828

  266. Brito GES, Fischer H, Craievich AF, Goncalves RR, Ribeiro SJL (2003) Structure of redispersible SnO2 nanoparticles. J Sol-Gel Sci Tech 28:45–50

  267. Herrmann-Jens W, Werner H, Gerd P (2004) Nanoparticulate, redispersible zinc oxide gels. United States patent US6710091B1

  268. Kaminski RC, Pulcinelli SH, Craievich AF, Santilli CV (2005) Nanocrystalline anatase thin films prepared from redispersible sol-gel powders. J Euro Cera Soci 25(12):2175–2180. https://doi.org/10.1016/j.jeurceramsoc.2005.03.026

  269. Yong Z, Meihua L (2007) Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals. Nanotechnology 18:275603

  270. Ling Q, Ami S, Jean CC, Jean PC, Jerome F, Berret J-F, Cousin F (2008) Redispersible hybrid nanopowders: cerium oxide nanoparticle complexes with phosphonated-PEG oligomers. ACS Nano 2:879–888. https://doi.org/10.1021/nn700374d

  271. Xiaoxu Z, Qinghong Z, Li Y, Wang H (2008) Redispersible and water-soluble LaF3:Ce, Tb nanocrystals via a microfluidic reactor with temperature steps. J Mater Chem 18:5060–5062. https://doi.org/10.1039/b812473f

  272. Bertrand F, Jesper SL, Michael W, Nicholas A, Phil J, Lennart B (2010) Spray drying of TiO2 nanoparticles into redispersible granules. 203(2):384–388. doi:https://doi.org/10.1016/j.powtec.2010.05.033

  273. Tobias L, Susanne R, Henna PU, Thomas K (2011) Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation.78(1):0–96. doi:https://doi.org/10.1016/j.ejpb.2010.12.002

  274. Lin YS, Abadeer N, Hurley KR, Haynes CL (2011) Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soci 133(50):20444–20457. https://doi.org/10.1021/ja208567v

  275. Mónica V, Enrique S, Arnaldo M, Rodrigo M (2012) Preparation of high solids content nano-titania suspensions to obtain spray-dried nanostructured powders for atmospheric plasma spraying 32(1):185–194. doi:https://doi.org/10.1016/j.jeurceramsoc.2011.08.007

  276. Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromol. https://doi.org/10.1021/bm301378n

  277. Zouaoui B, Sandrine B, Sara P, Tharwa S, Hatem F (2012) Redispersible lipid nanoparticles of Spironolactone obtained by three drying methods 413. doi:https://doi.org/10.1016/j.colsurfa.2012.03.027

  278. Kong X, Shi Z, Lu Z (2014) Synthesis of novel polymer nanoparticles and their interaction with cement. Cons Build Mater 68:434–443. https://doi.org/10.1016/j.conbuildmat.2014.06.086

  279. Núria B, Qi Z (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358

  280. Chowdhury PP, Shaik AH, Chakraborty J (2015) Preparation of stable sub 10nm copper nanopowders redispersible in polar and non-polar solvents. Coll Surf A: Physi Eng Asp 466:189–196. https://doi.org/10.1016/j.colsurfa.2014.10.031

  281. Cheng D, Wen Y, Wang L, An X, Zhu X, Ni Y (2015) Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohyd Polym 123:157–163. https://doi.org/10.1016/j.carbpol.2015.01.035

  282. Zabihi N, Ozkul MH (2015) The effect of nano-silica particles on fresh and hardened state properties of polymer cement mortars. Adv Mater Res 1129:113–120

  283. Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, Luo Y (2016) Development of “all-natural” layer-by-layer redispersible solid lipid nanoparticles by nanospray drying technology. Euro J Pharma Biopharma 107:273–285. https://doi.org/10.1016/j.ejpb.2016.07.022

  284. Hu Q, Wang T, Zhou M, Xue J, Luo Y (2016) Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Int J Bio Macro. https://doi.org/10.1016/j.ijbiomac.2016.07.089

  285. Hu Q, Gerhard H, Upadhyaya I, Venkitanarayanan K, Luo Y (2016) Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int J Bio Macro 87:130–140. https://doi.org/10.1016/j.ijbiomac.2016.02.051

  286. Ruge CA, Bohr A, Beck-Broichsitter M, Nicolas V, Tsapis N, Fattal E (2016) Disintegration of nano-embedded microparticles after deposition on mucus: a mechanistic study. Coll Surf B: Bioint 139:219–227. https://doi.org/10.1016/j.colsurfb.2015.12.017

  287. Stauch C, Ballweg T, Stracke W, Luxenhofer R, Mandel K (2016) Burstable nanostructured micro-raspberries: towards redispersible nanoparticles from dry powders. Jour of Coll and Int Sci. https://doi.org/10.1016/j.jcis.2016.11.047

  288. Stauch C, Späth S, Ballweg T, Luxenhofer R, Mandel K (2017) Nanostructured micro-raspberries from superparamagnetic iron oxide nanoparticles: studying agglomeration degree and redispersibility of nanoparticulate powders via magnetization measurements. J Coll Int Sci 505:605–614. https://doi.org/10.1016/j.jcis.2017.06.047

  289. Islam P, Water J, Bohr A, Rantanen J (2017) Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics 9(4):1. https://doi.org/10.3390/pharmaceutics9010001

  290. Picco AS, Ferreira LF, Liberato MS, Mondo GB, Cardoso MB (2017) Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications. Nanomedicine. https://doi.org/10.2217/nnm-2017-0280

  291. Zhou Y, Wei J, Lv Y, Bian H, Wang W, Wang F, Wang J, Sun J, Cui M, Shao Z (2019) Methodology of redispersible dry cellulose nanofibrils (CNFs) powder synthesis under waterless condition. ACS Sust Chem Eng 9b01340. doi:https://doi.org/10.1021/acssuschemeng.9b01340

  292. Min HH, Hyunho L, Jin SJ, Haemin J, Jeong SY, Sae HP, Siyoung QC, Jihoon S (2021) Hybrid nanocelluloses isolated through electron-beam irradiation in the wet state: redispersibility in water and superstability for pickering emulsions. ACS Sust Chem Eng. https://doi.org/10.1021/acssuschemeng.0c07451

  293. Kesisoglou F, Panmai S, Wu Y (2007) Nano sizing – oral formulation development and biopharmaceutical evaluation. Adv Drug Deli Rev 59:631–644

  294. Jia L, Wong H, Cerna C, Weitman SD (2002) Effect of nanonization on the absorption of 301029: ex vivo and in vivo pharmacokinetic correlations determined by liquid chromatography/mass spectrometry. Pharma Res 19:1091–1096

  295. Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nano sizing: a formulation approach for poorly-water-soluble compounds. Euro J Pharma Sci 18:113–120

  296. Keck CM, Muller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high-pressure homogenization. Euro J Pharma Biopharma 62:3–16

  297. Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization, and transformation into solid products. Int J Pharma 364:64–75

  298. Matteucci ME, Hotze MA, Johnston KP, Williams RO (2006) Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22:8951–8959

  299. Horspool KR, Lipinski CA (2003) Advancing new drug delivery concepts to gain the lead. Drug Deli Tech 34–46

  300. Hariharan M, Ganorkar LD, Amidon GE, Cavallo E, Gatti P, Hageman M, Choo I, Miller JL, Shah M (2003) Reducing the time to develop and manufacture formulations for first oral dose in humans. Pharma Tech 27:68–84

  301. Chaubal MV (2004) Application of drug delivery technologies in lead candidate selection and optimization. Drug Dis Today 9:603–609

  302. Ammoury N, Dubrasquet M, Fessi H, Devissaguet JP, Puisieux F, Benita S (1993) Indomethacin-loaded poly(d, l-lactide) nanocapsules protection from gastrointestinal ulcerations and anti-inflammatory activity evaluation in rats. Clinical Mater 13:121–130

  303. Anandharamakrishnan (2014), Celli et al. (2015), Esfanjani et al. (2015), Gharsallaoui et al. (2007), Jafari et al. (2008b, 2007), Mahdavi et al. (2014), Murugesan and Orsat (2012), Rajabi et al. (2015)

  304. Masters (1991), Okuyama and Lenggoro (2003), Bürki et al. (2011), Cal and Sollohub (2009), Vehring (2008), Wang et al. (2005), Wendel and Celik (2005) 25

  305. Arpagaus et al. (2017), Celli et al. (2015), Gharsallaoui et al. (2007)

  306. Arpagaus et al. (2017,2013), Wong and John (2015)

  307. Murugesan and Orsat (2012), Okuyama et al. (2006)

  308. Gunter Schmid (2010) NanoparticlesL From theory to application. Edition 2. ISBN 3527631550, 9783527631551. Page 533

  309. Anandharanakrishnan C (2017) handbook of drying for dairy products. ISBN: 9781118930519, 1118930517. Page 336

  310. Cordin Arpagaus, Philipp John, Andreas Collenberg, David Rutti (2017) 10-Nanocapsules formation by nano spray drying. Nanoencapsulation Technologies for food and Nutraceutical Industries. Pages 346-401. https://doi.org/10.1016/B978-0-12-809436-5.00010-0

  311. Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM (2018) Nano spray drying for encapsulation of pharmaceuticals. Int J Pharma. 546(1−2):194–214. https://doi.org/10.1016/j.ijpharm.2018.05.037

  312. Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R (1992) Aqueous nanodispersions prepared by a salting-out process. Int J Pharma. 87(1–3):239–246. https://doi.org/10.1016/0378-5173(92)90248-Z

  313. Karl K, Kristin T, Katrin Z (2000) Use of redispersible polymer powders or polymer granules as binders for producing solid pharmaceutical presentations. United States patent US6066334A

  314. Karl K, Kristin T, Katrin Z, Reinhold S (2000) Use of redispersible polymer powders of polymer granules for coating pharmaceutical or agrochemical use forms. United States patent US6046277A

  315. Christophe M (2004) Water redispersible adhesives and binders and tablets thereof. United States patent US20040023025A1

  316. Reinhard V (2008) Pharmaceutical particle engineering via spray drying. Pharma Res 25:999–1022

  317. Xiaoxia C, Michal EM, Connie YL, Keith PJ, Robert OW (2009) Flocculation of polymer stabilized nanocrystal suspensions to produce redispersible powders. Drug Deve Ind Phar. https://doi.org/10.1080/03639040802282896

  318. Min KL, Min YK, Sujung K, Jonghwi L (2009) Cryoprotectants for freeze-drying of drug nano-suspensions: effect of freezing rate. J Pharma Sci 98(12):4808–4817. https://doi.org/10.1002/jps.21786

  319. Jun H, Wai KN, Yuancai D, Shen S, Reginald BHT (2011) Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharma. https://doi.org/10.1016/j.ijpharm.2010.10.055

  320. Munawiroh SZ, Lipipun V, Ritthidej GC (2018) Optimization of redispersible spray dried powder of chitosan coated solid lipid-based nanosystems. Int J Drug Deli Tech. https://doi.org/10.25258/ijddt.v8i01.11903

  321. Huang G, Xie J, Shuai S, Wei S, Chen Y, Guan Z, Wang C (2020) Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum-based in situ-nanogel. Int J Pharma. https://doi.org/10.1016/j.ijpharm.2020.120182

  322. Guiha Y, Guangrui M, Ming H, Xingxiang J, Weidong L, Hye JY, Jiachan C (2021) Comparison of effects of sodium chloride and potassium chloride on spray drying and redispersion of cellulose nanofibrils suspension. Nanomaterials. https://doi.org/10.3390/nano11020439

  323. Masaayuki S, Shigeru M (2016) Redispersible powder dispersed cosmetic product. Spain ES2590902T3

  324. Bernard C, Minou N (2000) Colloidal dispersion and redispersible composition in the form of a cerium oxide-based colloidal dispersion. United States patent US6033677A

  325. Jorg B, Karl K, Angelika S (2001) Polymer powders redispersible in aqueous solution. United States patent US6281282B1

  326. Valentino DF (2011) Redispersible polymers including a protective colloid system. United States patent US7968642B2

  327. Prithwiraj M, Wendy C (2013) Cosmetic use of water-redispersible powders. United States patent US8545821B2

  328. Masaayuki S, Shigeru M (2016) Redispersible powder-dispersed cosmetic. European Patent Office EP2810639A1

  329. Masaayuki S, Shigeru M (2014) Redispersible powder-dispersed cosmetic. South Korea KR101489701B1

  330. Takashi M (2017) Aerosol cosmetic. United States patent US20170368374A1

  331. Vinh VT, Tuan LN, Ju YM, Young CL (2019) Core-shell materials, lipid particles, and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: challenges and development strategies. Chem Eng J. 368: 88–114. https://doi.org/10.1016/j.cej.2019.02.168

  332. Dickinseon E (1994) Colloidal aspects of beverages. Food Chem 51(4):343–3474. https://doi.org/10.1016/0308-8146(94)90184-8

  333. Robbins MM, Watson AD, Wilde PJ (2002) Emulsions— Creaming and rheology. Curr Opin Coll Int Sci 7(5,6):419–425. https://doi.org/10.1016/S1359-0294(02)00089-4

  334. Millqvist-Fureby A (2003) Characterization of spray-dried emulsions with mixed fat phases. Colloid Surf B 31(1–4):65–79. https://doi.org/10.1016/S0927-7765(03)00044-4

  335. Landstrom K, Alsins J, Bergenstahl B (2000) Competitive protein adsorption between bovine serum albumin and–lactoglobulin during spray drying. Food Hydrocolloids 14(1):75–82. https://doi.org/10.1016/S0268-005X(99)00047-8

  336. Dickinson E (1997) Properties of emulsions stabilized with milk proteins: Overview of some recent developments. J Dairy Sci 80:2607–2619

  337. Rousseau D (2000) Fat crystals and emulsion stability—a review. Food Res Int 33:3–14

  338. Van Aken GA, Blijdenstein TBJ, Hotrum NE (2003) Colloidal destabilisation mechanisms in protein-stabilized emulsions. Curr Opin Coll Inte Sci 8:371–379

  339. Fäldt P, Bergenståhl B (1995) Fat encapsulation in spray-dried food powders. J AmOil Chemists’ Soci 72:171–176

  340. Vega C, Kim EHJ, Chen XD, Roos YH (2005) Solid-state characterization of spray-dried ice cream mixes. Colloid Surf B 45:66–75

  341. Freudig B, Hogekamp S, Schubert H (1999) Dispersion of powders in liquids in a stirred vessel. Chem Eng Proc 38:525–532

  342. Roos YH, Karel M, Kokini JL (1996) Glass transitions in low moisture and frozen foods: Effect on shelf life and quality. Food Tech 38:95–108

  343. Bhandari BR, Howes T (1999) Implications of glass transition for the drying and stability of dried foods. J Food Eng 40:71–79

  344. Roos YH (1995) Water activity and glass transition temperature: How do they complement and how do they differ?. Food Preserv Moisture Control: Fundament Appl 133–153

  345. Maeda N, Hasegawa M, Kawano T, Kobayashi T, Pushpalal GKD (1994) In: Proceedings of the first East Asia symposium on polymers in concrete pp 131–140

  346. Ohama Y (2007) The past, present, and future of concrete-polymer composites: a life’s work. In: Proceedings of the 12th international congress on polymers in concrete, volume II (proceedings of Ohama symposium), Kangwon National University, Chuncheon, Korea 969–979

  347. Ohama Y (1998) Polymer-based admixtures. Cem Conc Comp. https://doi.org/10.1016/S0958-9465(97)00065-6

  348. Maranhão FL, John VM (2009) Bond strength and transversal deformation aging on cement-polymer adhesive mortar. Cons Build Mater. https://doi.org/10.1016/j.conbuildmat.2008.05.019

  349. Bayer R, Lutz H. Dry mortars. Encyclop Ind Chem. 11. https://doi.org/10.1002/14356007.f16_f01.

  350. Wang R, Wang PM (2011) Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Cons Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.04.060

  351. Mirza J, Mirza M, Lapointe R (2002) Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Cons Build Mater. https://doi.org/10.1016/S0950-0618(02)00027-2

  352. Jenni A, Holzer L, Zurbriggen R, Herwegh M (2005) Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem Conc Res. https://doi.org/10.1016/j.cemconres.2004.06.039

  353. Afridi MUK, Chaudhary ZU, Ohama Y, Demura K, Iqbal MZ (1994) Strength and elastic properties of powdered and aqueous polymer-modified mortars. Cem Conc Res. https://doi.org/10.1016/0008-8846(94)90105-8

  354. Wang R, Ma D, Wang P, Wang G (2015) Study on waterproof mechanism of polymer-modified cement mortar. Maga Conc Res. https://doi.org/10.1680/macr.14.00294

For more information RDP Powder, please get in touch with us!