How to control hardness in hard chrome plating?

31 Jul.,2025

Controlling hardness in hard chrome plating involves optimizing process parameters, bath composition, and post-treatment to achieve the desired hardness (typically 800–1000 HV). Here are the key methods:

 

Author: Anna

 

Controlling hardness in hard chrome plating involves optimizing process parameters, bath composition, and post-treatment to achieve the desired hardness (typically 800–1000 HV). Here are the key methods:


 

1. Bath Composition & Control

  • Chromium Concentration:

    • Maintain CrO₃ (chromic acid) at 200–400 g/L for standard hard chrome.

    • Higher CrO₃ (e.g., 400 g/L) increases hardness but reduces deposition efficiency.

  • Catalyst (Sulfate, SiF₆²⁻):

    • Sulfate (SO₄²⁻) ratio: CrO₃:SO₄²⁻ = 80:1 to 120:1 (critical for hardness).

    • Fluorosilicates (SiF₆²⁻) improve microhardness (up to 1200 HV) but increase brittleness.

  • Trivalent Chromium (Cr³⁺):

    • Keep Cr³⁺ < 5 g/L (excess reduces hardness and adhesion).


 

2. Current Density & Temperature

  • Current Density:

    • 30–60 A/dm² (higher current density → finer grain structure → higher hardness).

    • Too high (>60 A/dm²) causes roughness and hydrogen embrittlement.

  • Temperature:

    • 50–60°C (lower temps increase hardness but reduce ductility).

    • >65°C softens deposits (due to larger grain formation).


 

3. Post-Plating Treatments

  • Heat Treatment (Baking):

    • 200–250°C for 2–4 hrs relieves hydrogen embrittlement while retaining hardness.

    • Higher temps (>300°C) may soften chrome.

  • Shot Peening:

    • Improves surface compressive stress, enhancing fatigue resistance without reducing hardness.


 

4. Impurity Control

  • Metal Contaminants (Fe, Cu, Ni):

    • Remove via dummy plating or ion exchange (impurities reduce hardness).

  • Organic Contaminants:

    • Use activated carbon filtration (organics cause porosity and lower hardness).


 

5. Alternative Hard Chrome Processes

  • Hexavalent vs. Trivalent Chrome:

    • Traditional Cr⁶⁺ baths yield harder deposits (~1000 HV) than Cr³⁺ baths (~800–900 HV).

  • Composite Chrome Plating:

    • Add SiC, Al₂O₃, or diamond particles to increase hardness (up to 1400 HV).


 

Troubleshooting Low Hardness

Issue Solution
Soft deposits Increase current density; lower bath temp; check sulfate ratio.
Brittle coating Reduce SiF₆²⁻; bake for hydrogen relief.
Poor adhesion Improve pre-cleaning; optimize Cr³⁺ levels.

 

Best Practices Summary

  1. Strict bath control (CrO₃, sulfate, Cr³⁺).

  2. Optimize current & temperature (50–60°C, 30–60 A/dm²).

  3. Post-plate baking (200–250°C).

  4. Avoid contaminants (metals/organics).

 

Note: Hardness testing (Vickers/Knoop) should be performed post-baking for accurate results.