A literature review of smart warehouse operations management

05 May.,2023

 

  • Aldarondo F J, Bozer Y A (2020). Expected distances and alternative design configurations for automated guided vehicle-based order picking systems. International Journal of Production Research, in press, doi:https://doi.org/10.1080/00207543.2020.1856438

  • Amato F, Basile F, Carbone C, Chiacchio P (2005). An approach to control automated warehouse systems. Control Engineering Practice, 13(10): 1223–1241

  • Ang M, Lim Y F (2019). How to optimize storage classes in a unit-load warehouse. European Journal of Operational Research, 278(1): 186–201

  • Azadeh K, de Koster R B M, Roy D (2019a). Robotized and automated warehouse systems: Review and recent developments. Transportation Science, 53(4): 917–945

  • Azadeh K, Roy D, de Koster R B M (2019b). Design, modeling, and analysis of vertical robotic storage and retrieval systems. Transportation Science, 53(5): 1213–1234

  • Bartolini M, Bottani E, Grosse E H (2019). Green warehousing: Systematic literature review and bibliometric analysis. Journal of Cleaner Production, 226: 242–258

  • Basso F, Epstein L D, Pezoa R, Varas M (2019). An optimization approach and a heuristic procedure to schedule battery charging processes for stackers of palletized cargo. Computers & Industrial Engineering, 133: 9–18

  • Ben-Daya M, Hassini E, Bahroun Z (2017). Internet of Things and supply chain management: A literature review. International Journal of Production Research, 57(15–16): 4719–1742

  • Bottani E, Vignali G (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3): 284–310

  • Boysen N, Briskorn D, Emde S (2017). Parts-to-picker based order processing in a rack-moving mobile robots environment. European Journal of Operational Research, 262(2): 550–562

  • Boysen N, de Koster R B M, Weidinger F (2019). Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277(2): 396–411

  • Boysen N, Stephan K (2016). A survey on single crane scheduling in automated storage/retrieval systems. European Journal of Operational Research, 254(3): 691–704

  • Boywitz D, Boysen N (2018). Robust storage assignment in stack- and queue-based storage systems. Computers & Operations Research, 100: 189–200

  • Boywitz D, Schwerdfeger S, Boysen N (2019). Sequencing of picking orders to facilitate the replenishment of A-Frame systems. IISE Transactions, 51(4): 368–381

  • Bozer Y A, Aldarondo F J (2018). A simulation-based comparison of two goods-to-person order picking systems in an online retail setting. International Journal of Production Research, 56(11): 3838–3858

  • Cainiao (2018). The new pattern of logistics in China. Available at: taobao.com/markets/cnwww/cn-news-detail?spm=a21da.144546.0.0.77103045qpjGh5&id=90

  • Chen H L, Xue G L, Wang Z B (2017). Efficient and reliable missing tag identification for large-scale RFID systems with unknown tags. IEEE Internet of Things Journal, 4(3): 736–748

  • Chen W Y, Gong Y M, de Koster R B M (2020). Performance estimation of a passing-crane automated storage and retrieval system. International Journal of Production Research, in press, doi:https://doi.org/10.1080/00207543.2020.1854886

  • Chen Z X, Li X P, Gupta J N D (2015). A bi-directional flow-rack automated storage and retrieval system for unit-load warehouses. International Journal of Production Research, 53(14): 4176–4188

  • Chen Z X, Li X P, Gupta J N D (2016). Sequencing the storages and retrievals for flow-rack automated storage and retrieval systems with duration-of-stay storage policy. International Journal of Production Research, 54(4): 984–998

  • Cheng Z M, Fu X, Wang J, Xu X H (2021). Research on robot charging strategy based on the scheduling algorithm of minimum encounter time. Journal of the Operational Research Society, 72(1): 237–245

  • China Daily (2017). How Shanghai’s Yangshan port can run without humans. Available at: english.pudong.gov.cn/2017-12/12/c_118557.htm

  • Choy K L, Ho G T S, Lee C K H (2017). A RFID-based storage assignment system for enhancing the efficiency of order picking. Journal of Intelligent Manufacturing, 28(1): 111–129

  • Custodio L, Machado R (2019). Flexible automated warehouse: A literature review and an innovative framework. International Journal of Advanced Manufacturing Technology, 106(1–2): 533–558

  • Dadhich P, Genovese A, Kumar N, Acquaye A (2015). Developing sustainable supply chains in the UK construction industry: A case study. International Journal of Production Economics, 164: 271–284

  • de Koster R B M, Le-Duc T, Roodbergen K J (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2): 481–501

  • Derhami S, Smith J S, Gue K R (2019). Space-efficient layouts for block stacking warehouses. IISE Transactions, 51(9): 957–971

  • Digani V, Hsieh M A, Sabattini L, Secchi C (2019). Coordination of multiple AGVs: A quadratic optimization method. Autonomous Robots, 43(3): 539–555

  • Digani V, Sabattini L, Secchi C, Fantuzzi C (2015). Ensemble coordination approach in multi-AGV systems applied to industrial warehouses. IEEE Transactions on Automation Science and Engineering, 12(3): 922–934

  • Dou J J, Chen C L, Yang P (2015). Genetic scheduling and reinforcement learning in multirobot systems for intelligent warehouses. Mathematical Problems in Engineering, 2015: 597956

  • Draganjac I, Miklic D, Kovacic Z, Vasiljevic G, Bogdan S (2016). Decentralized control of multi-AGV systems in autonomous warehousing applications. IEEE Transactions on Automation Science and Engineering, 13(4): 1433–1447

  • Durach C F, Kembro J, Wieland A (2017). A new paradigm for systematic literature reviews in supply chain management. Journal of Supply Chain Management, 53(4): 67–85

  • Emde S, Polten L, Gendreau M (2020). Logic-based benders decomposition for scheduling a batching machine. Computers & Operations Research, 113: 104777

  • Ene S, Kucukoglu I, Aksoy A, Ozturk N (2016). A genetic algorithm for minimizing energy consumption in warehouses. Energy, 114: 973–980

  • Epp M, Wiedemann S, Furmans K (2017). A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems. International Journal of Production Research, 55(4): 960–978

  • Fager P, Sgarbossa F, Calzavara M (2021). Cost modelling of onboard cobot-supported item sorting in a picking system. International Journal of Production Research, 59(11): 3269–3284

  • Fottner J, Clauer D, Hormes F, Freitag M, Beinke T, Overmeyer L, Gottwald S N, Elbert R, Sarnow T, Schmidt T, Reith K B, Zadek H, Thomas F (2021). Autonomous systems in intralogistics — state of the art and future research challenges. Logistics Research, 14(1): 2

  • Foumani M, Moeini A, Haythorpe M, Smith-Miles K (2018). A cross-entropy method for optimising robotic automated storage and retrieval systems. International Journal of Production Research, 56(19): 6450–6472

  • Fragapane G, de Koster R B M, Sgarbossa F, Strandhagen J O (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(2): 405–426

  • Gagliardi J P, Renaud J, Ruiz A (2012). Models for automated storage and retrieval systems: A literature review. International Journal of Production Research, 50(24): 7110–7125

  • Gagliardi J P, Renaud J, Ruiz A (2015). Sequencing approaches for multiple-aisle automated storage and retrieval systems. International Journal of Production Research, 53(19): 5873–5883

  • Gareis M, Hehn M, Stief P, Korner G, Birkenhauer C, Trabert J, Mehner T, Vossiek M, Carlowitz C (2021). Novel UHF-RFID listener hardware architecture and system concept for a mobile robot based MIMO SAR RFID localization. IEEE Access, 9: 497–510

  • Gharehgozli A H, Xu C, Zhang W D (2021). High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system. European Journal of Operational Research, 289(2): 495–507

  • Gharehgozli A H, Zaerpour N (2020). Robot scheduling for pod retrieval in a robotic mobile fulfillment system. Transportation Research Part E: Logistics and Transportation Review, 142: 102087

  • Gharehgozli A H, Yu Y G, Zhang X D, de Koster R B M (2017). Polynomial time algorithms to minimize total travel time in a two-depot automated storage/retrieval system. Transportation Science, 51(1): 19–33

  • Ghelichi Z, Kilaru S (2021). Analytical models for collaborative autonomous mobile robot solutions in fulfillment centers. Applied Mathematical Modelling, 91: 438–457

  • Giusti I, Cepolina E M, Cangialosi E, Aquaro D, Caroti G, Piemonte A (2019). Mitigation of human error consequences in general cargo handler logistics: Impact of RFID implementation. Computers & Industrial Engineering, 137: 106038

  • Glock C H, Grosse E H, Abedinnia H, Emde S (2019). An integrated model to improve ergonomic and economic performance in order picking by rotating pallets. European Journal of Operational Research, 273(2): 516–534

  • Glock C H, Grosse E H, Neumann W P, Feldman A (2021). Assistive devices for manual materials handling in warehouses: A systematic literature review. International Journal of Production Research, 59(11): 3446–3469

  • Gong Y M, Jin M Z, Yuan Z (2021). Robotic mobile fulfilment systems considering customer classes. International Journal of Production Research, 59(16): 5032–5049

  • Grosse E H, Glock C H, Neumann W P (2017). Human factors in order picking: A content analysis of the literature. International Journal of Production Research, 55(5): 1260–1276

  • Gružauskas V, Baskutis S, Navickas V (2018). Minimizing the trade-off between sustainability and cost effective performance by using autonomous vehicles. Journal of Cleaner Production, 184: 709–717

  • Gu J X, Goetschalckx M, McGinnis L F (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1): 1–21

  • Gu J X, Goetschalckx M, McGinnis L F (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3): 539–549

  • Guo X L, Yu Y G, de Koster R B M (2016). Impact of required storage space on storage policy performance in a unit-load warehouse. International Journal of Production Research, 54(8): 2405–2418

  • Ha Y, Chae J (2019). A decision model to determine the number of shuttles in a tier-to-tier SBS/RS. International Journal of Production Research, 57(4): 963–984

  • Habibi Tostani H, Haleh H, Hadji Molana S M, Sobhani F M (2020). A Bi-Level Bi-Objective optimization model for the integrated storage classes and dual shuttle cranes scheduling in AS/RS with energy consumption, workload balance and time windows. Journal of Cleaner Production, 257: 120409

  • Hahn-Woernle P, Gunthner W A (2018). Power-load management reduces energy-dependent costs of multi-aisle mini-load automated storage and retrieval systems. International Journal of Production Research, 56(3): 1269–1285

  • Han S D, Yu J J (2020). DDM: Fast near-optimal multi-robot path planning using diversified-path and optimal sub-problem solution database heuristics. IEEE Robotics and Automation Letters, 5(2): 1350–1357

  • Hao J J, Yu Y G, Zhang L L (2015). Optimal design of a 3D compact storage system with the I/O port at the lower mid-point of the storage rack. International Journal of Production Research, 53(17): 5153–5173

  • Hassan M, Ali M, Aktas E, Alkayid K (2015). Factors affecting selection decision of auto-identification technology in warehouse management: An international Delphi study. Production Planning and Control, 26(12): 1025–1049

  • He Z J, Aggarwal V, Nof S Y (2018). Differentiated service policy in smart warehouse automation. International Journal of Production Research, 56(22): 6956–6970

  • Heshmati S, Toffolo T A M, Vancroonenburg W, Vanden Berghe G (2019). Crane-operated warehouses: Integrating location assignment and crane scheduling. Computers & Industrial Engineering, 129: 274–295

  • Jaghbeer Y, Hanson R, Johansson M I (2020). Automated order picking systems and the links between design and performance: A systematic literature review. International Journal of Production Research, 58(15): 4489–4505

  • Jiang M, Leung K H, Lyu Z Y, Huang G Q (2020). Picking-replenishment synchronization for robotic forward-reserve warehouses. Transportation Research Part E: Logistics and Transportation Review, 144: 102138

  • Jiang Z Z, Wan M Z, Pei Z, Qin X W (2021). Spatial and temporal optimization for smart warehouses with fast turnover. Computers & Operations Research, 125: 105091

  • Kabir Q S, Suzuki Y (2018). Increasing manufacturing flexibility through battery management of automated guided vehicles. Computers & Industrial Engineering, 117: 225–236

  • Keung K L, Lee C K M, Ji P, Ng K K H (2020). Cloud-based cyber-physical robotic mobile fulfillment systems: A case study of collision avoidance. IEEE Access, 8: 89318–89336

  • Kress D, Boysen N, Pesch E (2017). Which items should be stored together? A basic partition problem to assign storage space in group-based storage systems. IISE Transactions, 49(1): 13–30

  • Kumawat G L, Roy D (2021). A new solution approach for multi-stage semi-open queuing networks: An application in shuttle-based compact storage systems. Computers & Operations Research, 125: 105086

  • Lam H Y, Choy K L, Ho G T S, Cheng S W Y, Lee C K M (2015). A knowledge-based logistics operations planning system for mitigating risk in warehouse order fulfillment. International Journal of Production Economics, 170: 763–779

  • Lamballais Tessensohn T, Roy D, de Koster R B M (2017). Estimating performance in a robotic mobile fulfillment system. European Journal of Operational Research, 256(3): 976–990

  • Lamballais Tessensohn T, Roy D, de Koster R B M (2020). Inventory allocation in robotic mobile fulfillment systems. IISE Transactions, 52(1): 1–17

  • Lee C K M, Lin B B, Ng K K H, Lv Y Q, Tai W C (2019). Smart robotic mobile fulfillment system with dynamic conflict-free strategies considering cyber-physical integration. Advanced Engineering Informatics, 42: 100998

  • Lee C K M, Lv Y Q, Ng K K H, Ho W, Choy K L (2018). Design and application of Internet of Things-based warehouse management system for smart logistics. International Journal of Production Research, 56(8): 2753–2768

  • Lee C W, Wong W P, Ignatius J, Rahman A, Tseng M L (2020). Winner determination problem in multiple automated guided vehicle considering cost and flexibility. Computers & Industrial Engineering, 142: 106337

  • Lee H F, Schaefer S K (1996). Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. International Journal of Production Research, 34(10): 2943–2962

  • Lee H Y, Murray C C (2019). Robotics in order picking: Evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18): 5821–5841

  • Lenoble N, Hammami R, Frein Y (2021). Fixed and rolling batching for order picking from multiple carousels. Production Planning and Control, 32(8): 652–669

  • Lerher T (2016). Travel time model for double-deep shuttle-based storage and retrieval systems. International Journal of Production Research, 54(9): 2519–2540

  • Lerher T (2018). Aisle changing shuttle carriers in autonomous vehicle storage and retrieval systems. International Journal of Production Research, 56(11): 3859–3879

  • Lerher T, Ficko M, Palcic I (2021). Throughput performance analysis of Automated Vehicle Storage and Retrieval Systems with multiple-tier shuttle vehicles. Applied Mathematical Modelling, 91: 1004–1022

  • Li X W, Hua G W, Huang A Q, Sheu J B, Cheng T C E, Huang F Q (2020). Storage assignment policy with awareness of energy consumption in the KIVA mobile fulfilment system. Transportation Research Part E: Logistics and Transportation Review, 144: 102158

  • Liu J M, Liao H T, White Jr J A (2021). Stochastic analysis of an automated storage and retrieval system with multiple in-the-aisle pick positions. Naval Research Logistics, 68(4): 454–470

  • Liu T, Gong Y M, de Koster R B M (2018). Travel time models for split-platform automated storage and retrieval systems. International Journal of Production Economics, 197: 197–214

  • Lu S P, Xu C, Zhong R Y, Wang L H (2018). A passive RFID tag-based locating and navigating approach for automated guided vehicle. Computers & Industrial Engineering, 125: 628–636

  • Mahroof K (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45: 176–190

  • Małopolski W (2018). A sustainable and conflict-free operation of AGVs in a square topology. Computers & Industrial Engineering, 126: 472–481

  • Man X Y, Zheng F F, Chu F, Liu M, Xu Y F (2021). Bi-objective optimization for a two-depot automated storage/retrieval system. Annals of Operations Research, 296(1–2): 243–262

  • Manavalan E, Jayakrishna K (2019). A review of Internet of Things (IoT) embedded sustainable supply chain for Industry 4.0 requirements. Computers & Industrial Engineering, 127: 925–953

  • Manzini R, Accorsi R, Baruffaldi G, Cennerazzo T, Gamberi M (2016). Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS). International Journal of Production Research, 54(14): 4286–4304

  • Manzini R, Accorsi R, Gamberi M, Penazzi S (2015). Modeling class-based storage assignment over life cycle picking patterns. International Journal of Production Economics, 170: 790–800

  • McFarlane D, Giannikas V, Lu W R (2016). Intelligent logistics: Involving the customer. Computers in Industry, 81: 105–115

  • Meneghetti A, Monti L (2015). Greening the food supply chain: An optimisation model for sustainable design of refrigerated automated warehouses. International Journal of Production Research, 53(21): 6567–6587

  • Mirzaei M, de Koster R B M, Zaerpour N (2017). Modelling load retrievals in puzzle-based storage systems. International Journal of Production Research, 55(21): 6423–6435

  • Mo L F, Li C Y (2019). Passive UHF-RFID localization based on the similarity measurement of virtual reference tags. IEEE Transactions on Instrumentation and Measurement, 68(8): 2926–2933

  • Nicolas L, Yannick F, Ramzi H (2018). Order batching in an automated warehouse with several vertical lift modules: Optimization and experiments with real data. European Journal of Operational Research, 267(3): 958–976

  • Pan C H, Wang C H (1996). A framework for the dual command cycle travel time model in automated warehousing systems. International Journal of Production Research, 34(8): 2099–2117

  • Pan J C H, Shih P H, Wu M H, Lin J H (2015). A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Computers & Industrial Engineering, 81: 1–13

  • Qiu X, Luo H, Xu G Y, Zhong R Y, Huang G Q (2015). Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). International Journal of Production Economics, 159: 4–15

  • Ramtin F, Pazour J A (2015). Product allocation problem for an AS/RS with multiple in-the-aisle pick positions. IIE Transactions, 47(12): 1379–1396

  • Reaidy P J, Gunasekaran A, Spalanzani A (2015). Bottom-up approach based on Internet of Things for order fulfillment in a collaborative warehousing environment. International Journal of Production Economics, 159: 29–40

  • Roodbergen K J, Vis I F A (2009). A survey of literature on automated storage and retrieval systems. European Journal of Operational Research, 194(2): 343–362

  • Roozbeh Nia A R, Haleh H, Saghaei A (2017). Dual command cycle dynamic sequencing method to consider GHG efficiency in unit-load multiple-rack automated storage and retrieval systems. Computers & Industrial Engineering, 111: 89–108

  • Rouwenhorst B, Reuter B, Stockrahm V, van Houtum G J, Mantel R J, Zijm W H M (2000). Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122(3): 515–533

  • Roy D, Krishnamurthy A, Heragu S, Malmborg C (2015a). Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems. European Journal of Operational Research, 242(1): 72–87

  • Roy D, Krishnamurthy A, Heragu S, Malmborg C (2015b). Stochastic models for unit-load operations in warehouse systems with autonomous vehicles. Annals of Operations Research, 231(1): 129–155

  • Roy D, Nigam S, de Koster R B M, Adan I, Resing J (2019). Robot-storage zone assignment strategies in mobile fulfillment systems. Transportation Research Part E: Logistics and Transportation Review, 122: 119–142

  • Saidi-Mehrabad M, Dehnavi-Arani S, Evazabadian F, Mahmoodian V (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86: 2–13

  • Salah B, Janeh O, Noche B, Bruckmann T, Darmoul S (2017). Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot. Robotics and Computer-integrated Manufacturing, 44: 117–128

  • Sartoretti G, Kerr J, Shi Y F, Wagner G, Kumar T K S, Koenig S, Choset H (2019). PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning. IEEE Robotics and Automation Letters, 4(3): 2378–2385

  • Shahzad M, Liu A X (2015). Fast and accurate estimation of RFID tags. IEEE/ACM Transactions on Networking, 23(1): 241–254

  • Shi Y Y, Arthanari T, Liu X J, Yang B (2019). Sustainable transportation management: Integrated modeling and support. Journal of Cleaner Production, 212: 1381–1395

  • State Post Bureau of PRC (2020). China’s annual express delivery volume exceeded 70 billion items for the first time. Available at: spb.gov.cn/xw/dtxx_15079/202011/t20201117_3513569.html

  • Tao F, Zuo Y, Xu L D, Lv L, Zhang L (2014). Internet of Things and BOM-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2): 1252–1261

  • Tappia E, Marchet G, Melacini M, Perotti S (2015). Incorporating the environmental dimension in the assessment of automated warehouses. Production Planning and Control, 26(10): 824–838

  • Tappia E, Roy D, de Koster R B M, Melacini M (2017). Modeling, analysis, and design insights for shuttle-based compact storage systems. Transportation Science, 51(1): 269–295

  • Tappia E, Roy D, Melacini M, de Koster R B M (2019). Integrated storage-order picking systems: Technology, performance models, and design insights. European Journal of Operational Research, 274(3): 947–965

  • Technical.ly (2019). Amazon fulfillment center brings robotics to Sparrows Point. Available at: technical.ly/baltimore/2019/03/22/amazon-fulfillment-center-brings-robotics-to-sparrows-point-artificial-intelligence

  • Thanos E, Wauters T, Vanden Berghe G (2021). Dispatch and conflict-free routing of capacitated vehicles with storage stack allocation. Journal of the Operational Research Society, 72(8): 1780–1793

  • Tutam M, White J A (2019a). Multi-dock unit-load warehouse designs with a cross-aisle. Transportation Research Part E: Logistics and Transportation Review, 129: 247–262

  • Tutam M, White J A (2019b). A multi-dock, unit-load warehouse design. IISE Transactions, 51(3): 232–247

  • van Gils T, Ramaekers K, Braekers K, Depaire B, Caris A (2018a). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197: 243–261

  • van Gils T, Ramaekers K, Caris A, de Koster R B M (2018b). Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1): 1–15

  • Wang K, Yang Y, Li R (2020a). Travel time models for the rack-moving mobile robot system. International Journal of Production Research, 58(14): 4367–4385

  • Wang W, Wu Y H, Zheng J, Chi C (2020b). A comprehensive framework for the design of modular robotic mobile fulfillment systems. IEEE Access, 8: 13259–13269

  • Wang Y Y, Liu Z W, Huang K, Mou S D, Zhang R X (2020c). Model and solution approaches for retrieval operations in a multi-tier shuttle warehouse system. Computers & Industrial Engineering, 141: 106283

  • Wang Y Y, Mou S D, Wu Y H (2015). Task scheduling for multi-tier shuttle warehousing systems. International Journal of Production Research, 53(19): 5884–5895

  • Wauters T, Villa F, Christiaens J, Alvarez-Valdes R, Vanden Berghe G (2016). A decomposition approach to dual shuttle automated storage and retrieval systems. Computers & Industrial Engineering, 101: 325–337

  • Weidinger F, Boysen N, Briskorn D (2018). Storage assignment with rack-moving mobile robots in KIVA warehouses. Transportation Science, 52(6): 1479–1495

  • Wen J M, He L, Zhu F M (2018). Swarm robotics control and communications: Imminent challenges for next generation smart logistics. IEEE Communications Magazine, 56(7): 102–107

  • Winkelhaus S, Grosse E H (2020). Logistics 4.0: A systematic review towards a new logistics system. International Journal of Production Research, 58(1): 18–43

  • Xie L, Thieme N, Krenzler R, Li H Y (2021). Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems. European Journal of Operational Research, 288(1): 80–97

  • Xu X, Zhao X, Zou B, Gong Y, Wang H (2020). Travel time models for a three-dimensional compact AS/RS considering different I/O point policies. International Journal of Production Research, 58(18): 5432–5455

  • Xu X H, Gong Y M, Fan X X, Shen G W, Zou B P (2018). Travel-time model of dual-command cycles in a 3D compact AS/RS with lower mid-point I/O dwell point policy. International Journal of Production Research, 56(4): 1620–1641

  • Xu X H, Shen G W, Yu Y G, Huang W (2015). Travel time analysis for the double-deep dual-shuttle AS/RS. International Journal of Production Research, 53:3

  • Xu X H, Zou B P, Shen G W, Gong Y M (2016). Travel-time models and fill-grade factor analysis for double-deep multi-aisle AS/RSs. International Journal of Production Research, 54(14): 4126–4144

  • Yalcin A, Koberstein A, Schocke K O (2019). An optimal and a heuristic algorithm for the single-item retrieval problem in puzzle-based storage systems with multiple escorts. International Journal of Production Research, 57(1): 143–165

  • Yang H, Kumara S, Bukkapatnam S T S, Tsung F (2019). The Internet of Things for smart manufacturing: A review. IISE Transactions, 51(11): 1190–1216

  • Yang P, Miao L X, Xue Z J, Qin L (2015a). An integrated optimization of location assignment and storage/retrieval scheduling in multishuttle automated storage/retrieval systems. Journal of Intelligent Manufacturing, 26(6): 1145–1159

  • Yang P, Miao L X, Xue Z J, Qin L (2015b). Optimal storage rack design for a multi-deep compact AS/RS considering the acceleration/deceleration of the storage and retrieval machine. International Journal of Production Research, 53(3): 929–943

  • Yang P, Miao L X, Xue Z J, Ye B (2015c). Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems. Transportation Research Part E: Logistics and Transportation Review, 79: 164–177

  • Yetkin Ekren B (2017). Graph-based solution for performance evaluation of shuttle-based storage and retrieval system. International Journal of Production Research, 55(21): 6516–6526

  • Yetkin Ekren B (2021). A multi-objective optimisation study for the design of an AVS/RS warehouse. International Journal of Production Research, 59(4): 1107–1126

  • Yetkin Ekren B, Akpunar A (2021). An open queuing network-based tool for performance estimations in a shuttle-based storage and retrieval system. Applied Mathematical Modelling, 89: 1678–1695

  • Yetkin Ekren B, Akpunar A, Sari Z, Lerher T (2018). A tool for time, variance and energy related performance estimations in a shuttle-based storage and retrieval system. Applied Mathematical Modelling, 63: 109–127

  • Yoshitake H, Kamoshida R, Nagashima Y (2019). New automated guided vehicle system using real-time holonic scheduling for warehouse picking. IEEE Robotics and Automation Letters, 4(2): 1045–1052

  • Yu H, Yu Y (2019). Optimising two dwell point policies for AS/RSs with input and output point at opposite ends of the aisle. International Journal of Production Research, 57(21): 6615–6633

  • Yu M F, de Koster R B M (2009). The impact of order batching and picking area zoning on order picking system performance. European Journal of Operational Research, 198(2): 480–490

  • Yu Y, de Koster R B M, Guo X (2015). Class-based storage with a finite number of items: Using more classes is not always better. Production and Operations Management, 24(8): 1235–1247

  • Yu Y G, Han X Y, Hu G P (2016). Optimal production for manufacturers considering consumer environmental awareness and green subsidies. International Journal of Production Economics, 182: 397–408

  • Yuan R, Graves S C, Cezik T (2019). Velocity-based storage assignment in semi-automated storage systems. Production and Operations Management, 28(2): 354–373

  • Yuan Z, Gong Y M (2017). Bot-in-time delivery for robotic mobile fulfillment systems. IEEE Transactions on Engineering Management, 64(1): 83–93

  • Zaerpour N, Yu Y G, de Koster R B M (2017a). Small is beautiful: A framework for evaluating and optimizing live-cube compact storage systems. Transportation Science, 51(1): 34–51

  • Zaerpour N, Yu Y G, de Koster R B M (2015). Storing fresh produce for fast retrieval in an automated compact cross-dock system. Production and Operations Management, 24(8): 1266–1284

  • Zaerpour N, Yu Y G, de Koster R B M (2017b). Optimal two-class-based storage in a live-cube compact storage system. IISE Transactions, 49(7): 653–668

  • Zaerpour N, Yu Y G, de Koster R B M (2017c). Response time analysis of a live-cube compact storage system with two storage classes. IISE Transactions, 49(5): 461–480

  • Zhang F, Shang W W, Zhang B, Cong S (2020). Design optimization of redundantly actuated cable-driven parallel robots for automated warehouse system. IEEE Access, 8: 56867–56879

  • Zhang Z, Guo Q, Chen J, Yuan P J (2018). Collision-free route planning for multiple AGVS in an automated warehouse based on collision classification. IEEE Access, 6: 26022–26035

  • Zhao X F, Zhang R X, Zhang N, Wang Y Y, Jin M Z, Mou S D (2020a). Analysis of the shuttle-based storage and retrieval system. IEEE Access, 8: 146154–146165

  • Zhao Y L, Liu X P, Wang G, Wu S B, Han S (2020b). Dynamic resource reservation based collision and deadlock prevention for multi-AGVs. IEEE Access, 8: 82120–82130

  • Zhong R Y, Huang G Q, Lan S L, Dai Q Y, Chen X, Zhang T (2015). A big data approach for logistics trajectory discovery from RFID-enabled production data. International Journal of Production Economics, 165: 260–272

  • Zhou W, Piramuthu S, Chu F, Chu C B (2017). RFID-enabled flexible warehousing. Decision Support Systems, 98: 99–112

  • Zou B P, de Koster R B M, Xu X H (2018a). Operating policies in robotic compact storage and retrieval systems. Transportation Science, 52(4): 788–811

  • Zou B P, Gong Y M, Xu X H, Yuan Z (2017). Assignment rules in robotic mobile fulfilment systems for online retailers. International Journal of Production Research, 55(20): 6175–6192

  • Zou B P, Xu X H, Gong Y M, de Koster R B M (2018b). Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system. European Journal of Operational Research, 267(2): 733–753

Want more information on Warehouse equipment? Click the link below to contact us.

Guest Posts
*
*
* CAPTCHA
Submit